Strong many-particle localization and quantum computing with perpetually coupled qubits
نویسندگان
چکیده
We demonstrate the onset of strong on-site localization in a many-particle system, with effective localization length smaller than the intersite distance. The localization is obtained by constructing a bounded one-parameter sequence of on-site energies that eliminates resonant hopping between both nearest and remote sites. This sequence leads to quasiexponential decay of the single-particle transition amplitude. It also leads to on-site localization of stationary many-particle states in a finite-length chain. For an infinite many-particle system, we study the time during which all states remain on-site localized. We show that, for any number of particles, this time scales as a high power of the ratio of the bandwidth of on-site energies to the hopping integral. The proposed energy sequence is robust with respect to small errors. The formulation applies to fermions as well as perpetually coupled qubits. The results show viability of quantum computing with time-independent qubit coupling.
منابع مشابه
Ju l 2 00 5 Many - particle confinement by constructed disorder and quantum computing
Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbor hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all st...
متن کاملMany-particle confinement by constructed disorder and quantum computing
Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbour hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all s...
متن کاملQuantum measurements of coupled systems
We propose an approach to measuring coupled systems, which gives a parametrically smaller error than the conventional fast projective measurements. The measurement error is due to the excitations being not entirely localized on individual systems even where the excitation energies are different. Our approach combines spectral selectivity of the detector with temporal resolution and uses the ide...
متن کاملGlobal Optical Control of a Quantum Spin Chain
Quantum processors that combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary singleand entangling twoqubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that uni...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005